Understanding sagittal balance of spine and its implications in various spinal pathologies

Why erect position ?

How to measure sagittal balance ? C7 plumb line

 Sagittal balance is the alignment of C7 to the posterior superior aspect of the sacrum on an upright radiograph.

•Should be plus or minus 2 centimeters from the posterior superior aspect of the sacrum.

(C) www.targetortho.com

Positive Sagittal imbalance

C7 9 10 0 ARGE (C) www.targetortho.com

Negative Sagittal imbalance

Balancing mechanism for positive sagittal imbalance

To bring the centre of gravity back:

1. Increasing the lumbar lordosis

2. Pelvis retroversion

3. Hip extension and Knee flexion

Balancing mechanism Hip and knee

Balancing mechanism Spinopelvic parameters

- The relation of the pelvis to the spine, spinopelvic balance - contributes to overall sagittal balance.
- Defined by 3 different set of parameters

Duval-Beaupe`re et al-1992

Pelvic incidence

- Relation between sacral plate and the femoral heads.
- Constant morphological parameter for one person.
- Not posture dependant
- Linear correlation between age and PI
- PI stabilizes in early adolescence
- Does not change after skeletal • ORTHO (C) www.targetortho.com

Pelvic tilt & Sacral slope

PI = PT(< 50%)+SS(> 50%)

PI = PT+SS

Pelvic incidence - 69.5 degrees Pelvic tilt – 33.5 degrees. Sacral slope – 36.4 degrees.

Pelvic incidence = sacral slope + pelvic tilt.

Balancing mechanism Hip and knee

Balancing mechanism in patients with high PI Spinopelvic parameters

Balancing mechanism in patients with low PI Spinopelvic parameters

Failure of compensatory mechanism

SPONDYLOLISTHESIS

Incidence

- 5% of the population
- Rare under 5yrs
- 6% progress
- Never seen in paraplegics from birth

Spondylolisthesis

- Greek word
- "spondylous" –vertebrae
- "Lysis" -break or defect

"olisthesis" -slip or slide down a slippery incline

Spondylolisthesis

- Some progress/some do not
- Some are painful/some are not
- Some are deforming /some are not
- Some responds to posterior fusion alone/some do not

Classification

• <u>Wiltse – Newman-Macnab</u> <u>Classification(1976)</u>

Anatomic classification

<u>Marchetti-Bartolozzi</u>
 <u>Classification(1994)</u>

Developmental classification

Wiltse's Classification

Types	Definition
Dysplastic	 Congenital abnormalities of the facets No pars interarticularis defect
Isthmic	•Defect in the pars interarticularis that allows forward slipping of L5 on S1.
Degenerative	 Results from intersegmental instability of a long duration with subsequent remodeling of the articular processes
Traumatic	 results from fractures in the area of the bony hook other than the pars interarticularis,
Pathological	 This type results from generalized or localized bone disease
C) www.targetortho.com	

Wiltse, Newman, McNab's Classification

Dysplastic

Abnormalities of L5 or S1

No Pars Defect

Developmental dysplasia

- Not congenital
- Dysplasia of L5 & S1 structures
- Potential condition at birth

Developmental dysplasia

- Multifactorial oetiology
- Intra uterine development (thalidomide)
- Genetic

Occurrences in families Higher incidence in Eskimos Occurrences at Several levels

Bony hook & catch

•Bony hook –Pedicle,Pars,inferior facets of L5

Bony hook & catch

Dysplasia

- Elongated or parted pars
- Deficient L5 or S1 lamina
- Facet trophism/facet abnormalities

High vs low dysplastic

Wiltse, Newman, McNab's Classification

II - Isthmic

- Pars Defect A - Lytic (Stress Fracture) B - Elongated But Intact
- C Acute Fracture Of Pars

ORTHO (C) www.targetortho.com
SPONDYLOLYSIS

Stages of spondylosis defined by CT scan

14: Bom

Prespondylolytic stress reaction

Unilateral microfracture

Unilateral pseudarthrosis or nonunion

SPECT Scan

Acute spondylolysis -positive *Chronic Spondylolysis* - reverts normal.

• SPECT SCAN most Sensitive in Lysis.

• Hot Spot- Active or Fresh Lesion.

• **Cold Spot**-Chronic or metabolically Inactive Lesion.

Magnetic resonance Imaging

- MRI of lysis at an early stage
- Hyperintense signal T2 WI
- Proo-intense in T1 WI, that enhances on postcontrast

Clinical Features - Lytic, Dysplastic

Palpable step

 Heart shaped buttock due to vertical sacrum

Olisthetic scoliosis

Clinical Features - Lytic, Dysplastic

- Altered gait because of the tight hamstrings; flexed hip, flexed knee, and equinus positioning
- Foreshortened trunk with protruding abdomen and lower rib cage impinging on the iliac crests
- Significant hyperextension of the thoracolumbar spine above the humbosaccal kyphosis

Clinical Features - Lytic, Dysplastic

Common symptom is Back pain

Occasionally leg pain

Aggravated by sports and other activities

Slipping occurs between 9 -15 yrs

Wiltse, Newman, McNab's Classification

III - Degenerative

Degeneration

No Pars Defect

Common At L4-5

Degenerative listhesis

Clinical Features - Degenerative

- Common symptom is Back pain
- Neurogenic claudication
- Radicular symptoms
- Degenerative changes in X ray and MRI

(C) www.targetortho.com

Instability

	Degenerative spondylolisthesis	Lytic spondylolisthesis
Isthmic lysis	No	Yes
Displacement of spinous process	Anterior, with the vertebral body	No, or posterior displacement
Spinous process step-off	With the spinous process of the lower vertebra	With the spinuos process of the upper vertebra
Sagittal diameter of the central canal	Decreased	Increased
ORTHO	Variable stenosis secondary to osteoarthritic changes	Stenosis secondary to loss of height and pseudo disc bulging

(C) www.targetortho.com

Wiltse, Newman, McNab's Classification

Fractures of pedicle, lamina or facet No pars fracture

Wiltse, Newman, McNab's Classification

V - Pathological

Abnormalities of bone

Osteogenesis Imperfecta

Marchetti's Classification

Developmental	Acquired
High dysplastic With lysis With elongation	Traumatic Acute fracture Stress fracture
Low dysplastic With lysis With elongation	Post surgery Direct surgery Indirect surgery
	Pathological
GET RTHO	Degenerative

(C) www.targetortho.com

Clinical Presentation

1. Asymptomatic

-detected incidentally on the xrays.

2. Axial back pain

-mechanical pain

-instability pain(CATCH felt during flexion – extension ROM)

3. Radiculopathy and neurodeficits

4. Gait abnormalities

5. Cauda equine syndrome-rarely.

Radiology

Imaging

Grading:

- 0 = no slip
- 1 = 0 25%
- 2 = 25- 50%
- 3 = 50 75%
- 4 = 75-100%
- 5=dislocation

- Lumbosacral slip angle or kyphotic malalignment of lumbosacral junction
- Predicts progression of slip TARGET than 55 degrees, high risk of progression • www.targetortho.com

X- ray

 Initial imaging modality – standing lateral view

Stress views

Principles of Conservative Treatment

- 1. NSAIDS: short course
- 2. Weight loss
- 3. Steroid injections
 - Only in Acute phase
 - Not for long term use
- 4. Bracing

Spondyloysis/Spondyloisthesis Exercises

All-fours-to-heels sit

Copyright @ 2004 McKesson Health Solutions LLC. All rights reserved.

Physical therapy:

Aerobic

Physiotherapy

conditioning

Middle Path Regime

• Majority of the individuals are asymptomatic

• Initial non operative trail

• Exercise program are superior

• Surgery if conservative fails

Low grade listhesis surgery

- Decompression by laminectomy/ flavectomy
- Pedicle screw fixation
- Fusion

Posterolateral fusion Interbody fusion

Posterolateral fusion

Instrumented posterolateral fusion

Interbody fusion

PLIF vs TLIF

Source: Fauci AS, Kasper DL, Braunwald E, Hauser SL, Longo DL, Jameson JL, Loscalzo J:

Posterior lumbar interbody fusion

TLIF

MIS-TLIF

MIS-TLIF

- Decrease muscle crush injuries -retraction
- Avoid detachment of muscles to the posterior bony elements,
- Maintain the integrity of the dorsolumbar fascia
- Decrease the size of the surgical corridor to coincide with the area of the surgical target site.

XLIF

XLIF

- XLIF is performed through a lateral, retroperitoneal,
- Transpsoas approach to the anterior column,
- Uses real-time directional neuromonitoring to ensure safe passage through the psoas muscle, avoiding the nerves of the lumbar plexus

AXIAL LIF

Steps in Axial LIF

Spino-pelvic sagittal balance of spondylolisthesis

Type 6: Unbalanced spine

Insitu fixation and fusion

Pre-op 21.07.2009

Post-op

Bohlmann's Technique

Reduction of High Grade Spondylolisthesis

Gaines Procedure

Pars repair - Techniques

• <u>Kimura (1968):</u>

- First described pars repair.
- Cancellous bone grafts + Cast.

• <u>Buck (1970):</u>

- Screw fixation + bone grafting.

- Nicol and Scott (1986):
 - Tension band wire.

- Morscher (1984):
 - Hook screw.

- Phillipe Gillet (1999):
 - V shaped rod-screw construct.

Bilateral Spondylolysis

Conclusion

- Instrumented posterolateral fusion remains the gold standard
- MIS TLIF has a definitive advantage in low grade lythesis.
- Understanding pelvic incidence is crucial for understanding saggital balance

•Thank you

