DIAGNOSIS AND MANAGEMENT IN PCL AND PLC DEFICIENT KNEE

DR.MUKUL MOHINDRA

Consultant Specialist

Safdarjung Hospital VMM College New Delhi

ANATOMY AND BIOMECHANICS of POSTERIOR CRUCIATE LIGAMENT And POSTERIO LATERAL COMPLEX

Quick Review

ANATOMY OF PCL

Extra-synovial structure with its own synovial sheath!

AVG. LENGTH: 38 mm (Girgis, Clin Orthop Rel Res, 1975)

Tensile strength 1.5 x that of ACL

ORIGIN: Broad crescent shaped area over medial femoral condyle in the intercondylar notch

INSERTION: In a depression between two tibial plateaus (the

(C) www.targetortho.com

FEMORAL ORIGIN

Broad crescent shaped origin!

1.0 -1.5 cm inferior to posterior rim of tibia (PCL facet)

Q. The thicker bundle in the PCL is

A.AL bundle

B.AM bundle

C.PL bundle

D.PM bundle

PCL Complex

PCL BUNDLES: AL and PM

MENISCO-FEMORAL LIGAMENTS

(have significant contribution to posterior drawer stability)

17.2% femoral footprint of PCL can be meniscofemoral ligaments

BIOMECHANICS

Primary restraint to posterior translation of tibia

Secondary restraint to external rotation

Q. Not a part of PLC

A.Arcuate ligament

B.POL

C.PF ligament

D.Popliteus tendon

PLC Complex

BIOMECHANICS OF PCL AND PCL DEFICIENT KNEE

Primary restraint to VARUS and EXTERNAL ROTATION

100 N posterior tibial load given

Gollehon et al

Isolated PLC sectioned: 3-5 mm posterior tibial translation maximum increase at 30° knee flexion)

PCL sectioned: 8-10 mm of posterior tibial translation (maximum increase at 90° knee flexion)

PCL + PLC sectioned: > 15 mm translation

BIOMECHANICS OF PLC DEFICIENT KNEE

PLC sectioned and 5 N-m external tibial torque given: *in situ forces in PCL increased by 2-6 times*

(Fox and Harner, 1998)

So must to reconstruct PLC when performing PCL reconstruction

cunical Diagnostic aspects of POSTERIOR CRUCIATE LIGAMENT And POSTERIO LATERAL COMPLEX

History and Examination

CLINICAL TESTS TESTING FOR PCL

Posterior drawer teSt

TESTING FOR PCL

CLINICAL TESTS TESTING FOR PCL

TESTING FOR PCL

- Q. The most reliable test for PCL tear is
- A. Posterior drawer test
- B. Godfrey's posterior sag
- C.Quadriceps active test
- D.Dial test

TESTING FOR PCL + PLC

KNEE FLEXION 90°

KNEE FLEXION 30°

TESTING FOR PCL + PLC

TESTING FOR PCL + PLC

ASSISTIVE TESTS

VARUS STRESS TEST

VALGUS STRESS TEST

STRESS TESTS

ROLE OF IMAGING in POSTERIOR CRUCIATE LIGAMENT And POSTERIO LATERAL COMPLEX

RADIOGRAPHY. CT AND MRI

Q. Arthritis secondary to a deficient PCL would generally involve

- A. Patello femoral compartment
- B. Anterio medial compartment
- C. Both A and B
- D. Postero medial compartment

PCL INJURY

> 1.5 T, Small FOV

MRI

SAGITTAL OBLIQUE IMAGES

NORMAL PCL

TARGET
ORTHOProad curvilinear band of low signal
(C) www.targetortho.com
(C) w

ABNORMAL PCL

AVULSION

INTRA-SUBSTANCE TEAR

FULL THICKNESS TEAR

COMPLETE vs PARTIAL TEAR

MUCOID DEGENERATION vs PARTIAL TEAR

TARGET et al. AJR Am J Roentgenol. 2013 Aug;201(2):394-9. Tram-track Oppea arce of the posterior cruciate ligament (PCL): correlations with mucoid (C) www.tadegenerations ligamentous stability, and differentiation from PCL tears.

DOUBLE PCL SIGN

NORMAL PLC

LCL TEAR

POPLITEUS TEAR

INSTRUMENTED MEASUREMENTS in POSTERIOR CRUCIATE LIGAMENT And POSTERIO LATERAL COMPLEX

Arthrometry AND Stress Radiography

ARTHROMETRY

Instrumented quantification of laxity

Posterior translation

Knee ligament Testing platform
[KT-1000/2000]

by Medmetric, San diego

Knee Laxity Tester by Stryker

Rotational assessment

Rotationometer/ Laxiometer

ARTHROMETRY

ARTHROMETRY ROTATIONOMETER

STRESS RADIOGRAPHY

Posterior laxity

Varus/ Valgus laxity

STRESS RADIOGRAPHY

POSTERIOR LAXITY

- Hamstring contraction x-ray
- Gravity sag view
- Kneeling x-ray
- Telos stress view

STRESS RADIOGRAPHY

HAMSTRING CONTRACTION X RAY

STRESS RADIOGRAPHY GRAVITY SAG VIEW

STRESS RADIOGRAPHY

KNEELING X RAY VIEW

STRESS RADIOGRAPHY

TELOS STRESS VIEW

STRESS RADIOGRAPHY VARUS/ VALGUS STRESS VIEWS

Indirect arthroscopic evidences of PCL injury

SLOPPY ACL SIGN

DRIVE THROUGH SIGN

MANAGEMENT

When to Operate for PCL??

- Avulsion injuries
- Isolated grade III PCL injury; acute or chronic
- Grade II in following scenarios:
- PCL injury in setting of multi ligamentous knee injury
- ✓ Symptomatic patient who fails to respond to conservative treatment

TRANSTIBIAL (T-T) TECHNIQUE

TIBIAL INLAY TECHNIQUE

ARTHROSCOPIC (T-T) PCL RECONSTRUCTION

POSTERO MEDIAL SAFETY INCISION

REHABILITATION

A: injury to popliteofibular ligament, popliteus tendon

B: injury to popliteofibular ligament, popliteus tendon, and FCL

C: injury to popliteofibular ligament, popliteus tendon, and FCL, lateral capsular avulsion, and cruciate ligament disruption

GRADING PLC (Fanelli)

LARSON'S TECHNIQUE (MODIFIED)

- Q. 30 years female athlete with chronic PCL PLC injury has come to you with varus thrust gait. Ideal management
- A. Reconstruct the PCL and PLC
- B. HTO
- C.HTO and PCL PLC reconstruction in same sitting
- D. Stage HTO and ligament reconstruction by 6 weeks

ROLE OF HTO

- HTO should be done for treatment of **CHRONIC** PCL/PLC-deficient knee associated with varus malalignment. If the knee is still unstable, soft tissue procedures should be performed 6–8 months after correction of the malalignment.
- HTO allows the surgeon to modify both the coronal and the sagittal plane of the knee; and an increased posterior tibial slope stabilizes the joint!

THANK YOU

