Paediatric Upper limb injuries

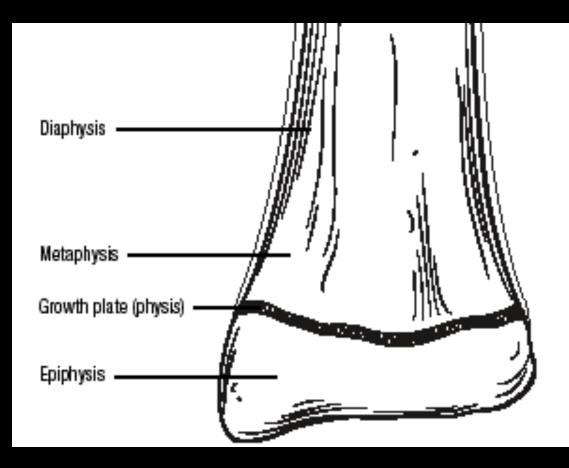
Sanjay Arora

INTRODUCTION

 ANATOMY OF THE GROWING BONE INJURY PATTERN OF BONE • PHYSEAL INJURIES SPECIFIC SITES • DISTAL RADIUS ELBOW CLAVICLE Humerus

RELEVANCE

- Nearly 20% of children who present with an injury have a fracture
 - 42% boys, 27% girls will sustain fracture in childhood



ANATOMY OF GROWING BONE

- Epiphysis
- Physis
- Metaphysis
- Diaphysis
- Periosteum

- Bones tend to BOW rather than BREAK
- Compressive force= TORUS fracture
 - Aka. Buckle fracture
- Force to side of bone may cause break in only one cortex= GREENSTICK fracture
 - The other cortex only BENDS

 In very young children, neither cortex may break= PLASTIC DEFORMATION

- Bones tend to BOW rather than BREAK
- Compressive force= TORUS fracture
 - Aka. Buckle fracture
- Force to side of bone may cause break in only one cortex= GREENSTICK fracture
 - The other cortex only BENDS

 In very young children, neither cortex may break= PLASTIC DEFORMATION

- Bones tend to BOW rather than BREAK
- Compressive force= TORUS fracture
 - Aka. Buckle fracture
- Force to side of bone may cause break in only one cortex= GREENSTICK fracture
 - The other cortex only BENDS

 In very young children, neither cortex may break= PLASTIC DEFORMATION

- Bones tend to BOW rather than BREAK
- Compressive force= TORUS fracture
 - Aka. Buckle fracture
- Force to side of bone may cause break in only one cortex= GREENSTICK fracture
 - The other cortex only BENDS

 In very young children, neither cortex may break= PLASTIC DEFORMATION
 TARGET

INJURY PATTERNS

- Point at which metaphysis connects to physis is an anatomic point of weakness
- Ligaments and tendons are stronger than bone when young
 - Bone is more likely to be injured with force
 - Periosteum is biologically active in children and often stays intact with injury
 - This stabilizes fracture and promotes healing

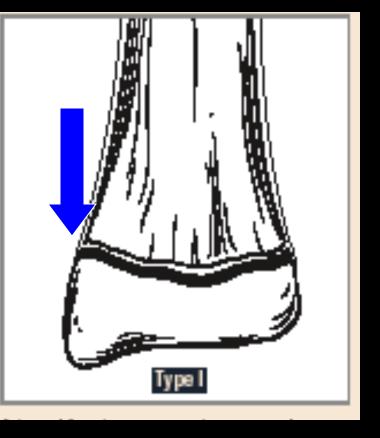
INJURY PATTERNS

- Point at which metaphysis connects to physis is an anatomic point of weakness
- Ligaments and tendons are stronger than bone when young
 - Bone is more likely to be injured than soft tissue
 - Periosteum is biologically active in children and often stays intact with injury

This stabilizes fracture and promotes healing ORTHO

PHYSEAL INJURIES

- Many childhood fractures involve the physis
 - 20% of all skeletal injuries in children
 - Can disrupt growth of bone
 - Injury near but not at the physis can stimulate bone to grow more


SALTER HARRIS

- Classification system to delineate risk of growth disturbance
 - Higher grade fractures are more likely to cause growth disturbance
 - Growth disturbance can happen with ANY physeal injury

 Fracture passes transversely through physis separating epiphysis from metaphysis

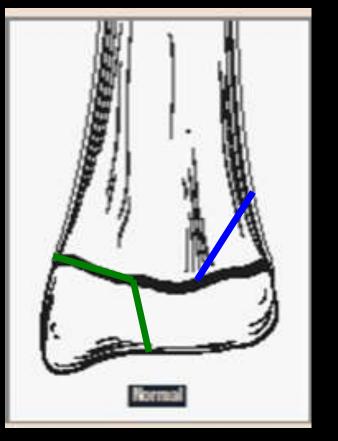
II
III
IV
V

• []

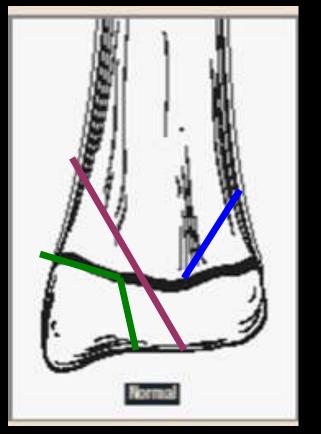
- Transversely through physis but exits through metaphysis
- Triangular fragment

• |||

• IV



• | • || • <u>|||</u>


> Crosses physis and exits through epiphysis at joint space

IVV

- ||
- •
- <u>IV</u>
 - Fracture extends upwards from the joint line, through the physis and out the metaphysis

- |||
- IV
 - V
 Crush injury to growth plat

PHYSEAL FRACTURES

• MOST COMMON: Salter Harris

PHYSEAL FRACTURES

- MOST COMMON: Salter Harris <u>II</u>
 - Followed by I, III, IV, V
 - Refer to ortho III, IV, V
 - I and II effectively managed by primary care with casting (most commonly)
- Don't forget to tell Mom and Dad that growth disturbance can happen with any physeal fracture

IT'S GOOD TO BE YOUNG

- Children tend to heal fractures faster than adults
 - Advantage: shorter immobilization times
 - Disadvantage: misaligned fragments become "solid" sooner
- Anticipate remodeling if child has > 2 years of growing left
 - Mild angulation deformities often correct themselves
 - Rotational deformities require reduction (don't remodel)

IT'S GOOD TO BE YOUNG

- Fractures in children may stimulate longitudinal bone growth
 - Some degree of bone overlap is acceptable and may even be helpful
- Children don't tend to get as stiff as adults after immobilization
- After casting, callus is formed but still may be fibrous
 - Avoid contact activities for 2-4 weeks once out of cast

Developing Bone - Anatomy

- Epiphysis
- Physis
- Metaphysis
- Diaphysis

The Developing Bone

• Thicker periosteum

• Bone is more elastic

- Allows for unique fracture types
 - Torus (buckle)
 - Greenstick

Pediatric Fractures

- Heal more rapidly than adults
- Capable of remodeling deformity
- What favors remodeling?
 - Younger > older
 - Closer to physis > midshaft
 - Only angulation in the plane of the adjacent joint will remodel

Forearm Fractures

- Most common site of fracture (50% of all #)
- Physeal injuries of the distal radius (+/- ulna)
- Metaphyseal fractures radius/ulna

Physeal Injuries of the Radius

- Usually Salter I or II
- Usually displaced posteriorly (collestype)
- Smith's-type less common
- Complications uncommon

Physeal Injuries of the Radius

• Reduction?

- Want physeal injuries close to anatomic
- Normally have 0-11° volar tilt at distal radius
- Want angulation at least neutral and minimum displacement
- Needs good molding about 11% will slip
- Unable to correct dorsal angulation
- More than 10% displaced

Metaphyseal Injuries of the Radius

- Buckle fractures
- Greenstick
- Complete

Buckle vs Greenstick

- Be careful !!!
- Buckle #
 - Cortex on opposite side must be unaffected
 - These are stable fractures
- Greenstick #
 - Cortex # on one side and bent on other
 - These are unstable they tend to move back to the position of maximal deformity

Distal Forearm - Buckle

- Stable Fractures
- Management controversial:
 - Immobilize?
 - Cast?
 - Many opt for splint

Wrist buckle fractures. A Plint et al. CJEM March 2003

- Who might benefit from cast? More severe buckle, v. young, v. active
- How long do we immobilize? 2-3 wks

Does this need a reduction? What is acceptable angulation in the distal radius?

Distal Forearm - Greenstick & Complete

• Reduction?

- Radial or ulnar angulation
- Rotational deformity
- Infants: >30° angulation
- Children: >15° angulation
- Peripubertal: need 2-3 yrs growth to remodel

How about this midshaft #? What is acceptable angulation in a midshaft #?

8 yo female

Midshaft Radius/Ulna Injuries

• Reduction?

- Any radial / ulnar angulation
- Any rotational deformity
- Infants: >25°
- Children: >10°
- Peripubertal: need 2-3 years to remodel
- Acceptable displacement?
 - If young, as much as 90%

Forearm Reductions & Casting

- Greenstick #: Many advocate breaking far cortex to prevent recurrence of deformity (but run the risk of bayonet)
- Remember that thick periosteum is your friend !!
- Good 3 point molding essential
- Apply above elbow cast for all reductions

What about Bayoneted # ?

When can you give them a go?

Bayoneted Fractures

 Prepubecsent ~ if distal or midshaft, can give it a try ~ often difficult to get ulna back on (most of us discuss the options with the parents)

- Peripubertal / Teens
 - may consider trying metaphyseal #
 - Midshaft or proximal

• Is this a problem?

2 yo male

Bowing deformity

- These will NOT
 remodel !!
- Must be reduced if visible deformity or restricted ROM – but difficult
- If attempting reduction – check for full supination & pronation

Ouch !!! What's This?

MONTEGGIA # DISLOCATION

TYPE I

TYPE II

TYPE III

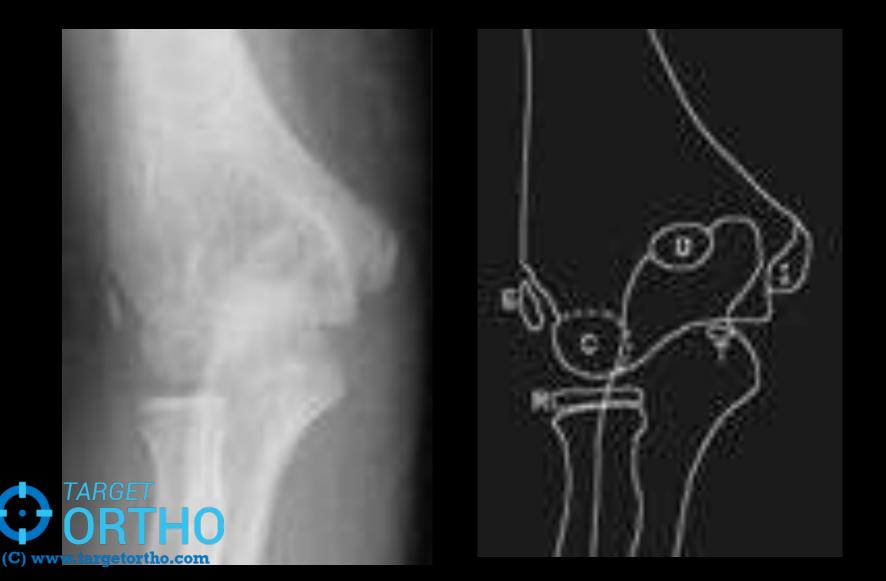
TYPE IV

Proposed classification based on Olney and Cepelík

Lincoln and Mubarak

Elbow

Supracondylar #


Lateral condyle #

Medial epicondyle #

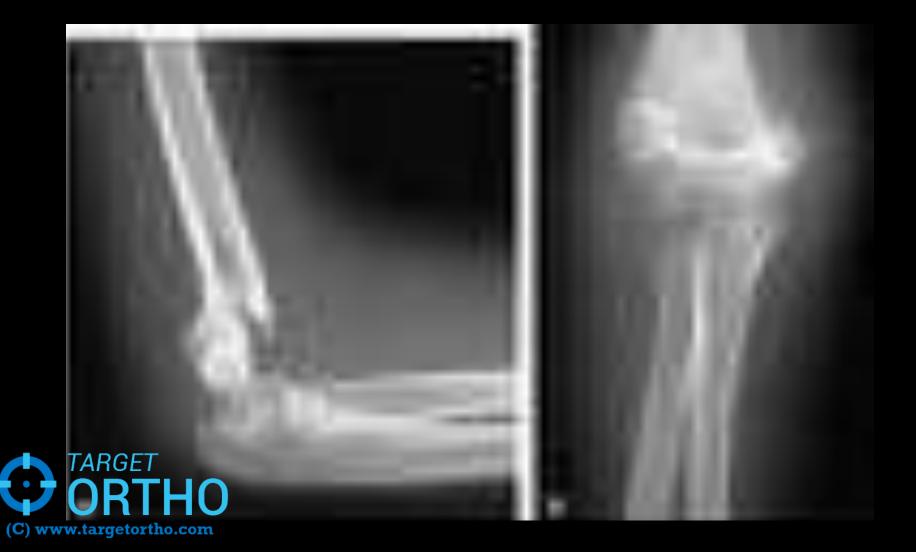
Proximal radius

Ossification Centers - CRITOE

Anterior Humeral Line

Radial Line

Should bisect the radius in ALL views



Type I

Type II

Type III

Supracondylar Fracture Complications

- Very high rate of complications!!
- Acutely:
 - Neurologic injury (8-15%)
 - Ant interosseuous branch of median n
 - Radial and ulnar nerves also may be involved
 - Radial artery (2% overall, 50% in Type III)
 - Compartment Syndrome
- Longer term:

Cubitus varus, Volkmann's ischemic contract.

Lateral Condyle Fracture

- 15% of elbow #s
- Usually Salter-Harris IV
- Peak age 4-10 years

 Lateral Condyle Fractures are the second most common fracture a higher risk of nonunion, malunion, and AVN than other pediatric elbow
 Contrection

Classification

Lateral Condyle Fracture

Complications

- Stiffness
- Delayed union
- Non union
- Malunion
- Cubitus valgus +_ tardy ulnar neve palsy
- Avn
- Fish tail deformity

ORTHO (C) www.targetortho.com

Medial Epicondyle Fracture

- Usually seen in adolescent boys
- Do not involve the joint surface
- Check for ulnar nerve injury
- 50% associated with dislocation –
- If diplacement < 4mm backslab
- If displacement > 5 mm pinned

Medial Epicondyle Fractures

 Difficult to identify in young children (so much cartilage)

$NORMAL \rightarrow$

 Ossification centre should follow smooth contour

Medial Epicondyle Fracture

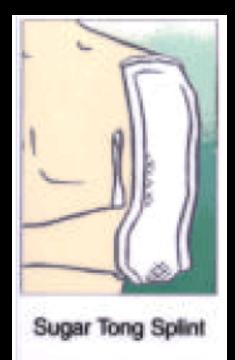
What's this?

Proximal Radius Fractures

- Most common in ages 8 12
- Usually involve the metaphysis or the physis, and not the radial head
- Management?
 - < 15° angulation posterior slab, F/U with ortho</p>
 - 15-30° posterior slab early to ortho
 - > 30° angulation call ortho for reduction

Proximal Radius

Proximal Humeral Fractures


- Proximal humeral physis
 - Usually SH type I or II
 - ++ potential for remodelling
 - Age 1-5
 - 70° angulation, 100% displacement
 - Age 5-12
 - 50° angulation, 50% displacement
 - Age >12
 - 30% displacement

Proximal Humeral Fractures

Management


Sugar tong splint & sling, f/u ortho

Clavicle

- 10–15% of all pediatric #s
- 90% middle third
 - Sling
 - Pain management
 - Warn parents about the bump
 - F/U fam doc in 6-8 weeks

Sling vs Figure of 8

- Treatment of clavicular fractures. Figure-ofeight bandage versus a simple sling. Andersen K. Jensen PO. Lauritzen J. Acta Orthopaedica Scandinavica. 58(1):71-4, 1987
 - RCT:
 - 79 pts
 - figure-of-eight bandage vs simple sling
 - simple sling caused less discomfort and perhaps fewer complications than figure-of-eight
 - The functional and cosmetic results of the two methods of treatment were identical and alignment of the healed fractures was unchanged from the initial displacement

Proximal / Distal Clavicle Fractures

- Proximal clavicle #'s (<2%)
 - Usually involve growth plate SH I or II
 - If clavicle displaced posteriorly, may get tracheo-esophageal compression – if so talk to ortho and get CT
- Distal clavicle #'s
 - Usually involve growth plate SH I or II
 - Often difficult to distinguish from AC sep
 - Ortho f/u if grossly unstable

