CEREBRAL PALSY & MMC

Sanjay Arora

Consultant Pediatric Orthopedics
ORTHOMED HOSPITAL
Hisar

- Definition
- Classification
- Etiology
- Pathogenesis
- Evaluation and surgical management
- Medical management of spasticity

Definition

 Permanent disorders of the development of movement and posture

 Non-progressive disturbances of the developing fetal and infant brain

results in motor impairment

Etiology/Pathology

• Most likely due to brain damagepossible cause being anything that interferes with oxygen to the brain.

 Damage usually occurs during fetal development, before, during, or after birth, or during infancy.

Etiology/Pathology

Exact cause is unknown

www.targetortho.com

 Most likely due to brain damagepossible cause being anything that interferes with oxygen to the brain.

 Damage usually occurs during fetal development, before, during, or after birth, or during infancy.

Cerebral Palsy: Etiologic

- Prenatal (70%)
 Infection, anoxia, toxic, vascular, Rh disease, genetic, congenital malformation of brain
- Natal (5-10%)
 Anoxia, traumatic delivery, metabolic
- Post natal Trauma, infection, toxic

Risk Factors: Prematurity and LBW

- Approximately 50% of children with cerebral palsy have low birth weight, and 28% weigh less than 1500 g at birth.
- The prevalence of birth weight—specific cerebral palsy ranges from 1.1 per 1000 neonatal survivors weighing 2500 g or more to 78.1 per 1000 in infants weighing less than 1000 g. [417]

Cerebral Palsy: Complications

- Spasticity
- Weakness
- Increase reflexes
- Clonus
- Seizures
- Articulation & Swallowing difficulty

- Visual compromise
- Deformation
- Hip dislocation
- Kyphoscoliosis
- Constipation
- Urinary tract infection

Classification

Physiological

Spasticity:

Hypotonia:

Dystonia: lead pipe

Athetosis

Ataxic cerebral palsy

Mixed

Pyramidal

motor cortex, IC or CS tracts

Extrapyramidal

basal ganglia,

Thalamus,

Subthalamic nucleus

and/or cerebellum

Classification

Geographical

Hemiplegia

Diplegia

Triplegia

Quadriplegia

CE

The corticospinal tracts carry movement order to the lower motor neuron.

The nerve impulse arising from the cerebral motor cortex is also sent to the basal ganglia and the extrapyramidal system nuclei.

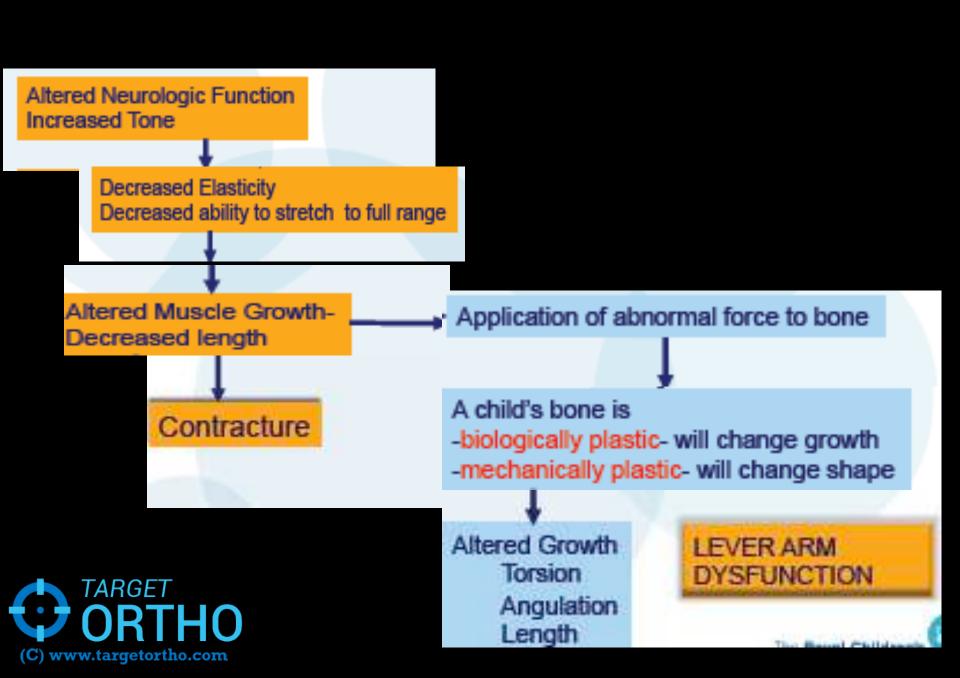
The motor cortex is responsible for planning voluntary movement.

The basal ganglia correct the timing of movement.

The extrapyramidal system corrects the force of contraction of the muscles involved.

The cerebellum coordinates the speed and direction of movement.

The interneurons send inhibitory or excitatory impulses to the lower motor neuron and regulate its activity.


These corrective impulses from the extrapyramidal system are sent to the interneurons in the medulla spinalis.

organs in the tendons and mechanoceptors in the joints send information on the degree of contraction to the medulla spinalis, cerebellum and the somatosensory cortex.

Muscle spindles in the contracting muscle, golgi tendon

CO www.targetortho

The lower notor neuron sends contraction impulse to the muscle through the peripherimpulse through through the peripherimpulse through the peripherimpulse through the peripherimpulse through through the peripherimpulse through the peripherimpulse through the peripherimpulse through through the peripherimpulse through through the peripherimpulse through through the peripherimpulse through through through through the peripherimpulse through through

Differential diagnosis

- Spinal tumor
- Familial spastic papaparesis
- Spinocerebellar ataxia
- Congenital hypothyroidism
- Dopa responsive dystonia

Evaluation

- Family history
- Developemental history
- Handedness
- Related medical condition

Physical examination

Muscle tone

Reflexex

DTR

Infantile reflexes

Balance, sitting and gait

Physical examination

- Passive and active range of motion of all joints.
- Evaluation of fixed muscle contractures vs dynamic muscle contractures.
- recognition of joint contractures and/or joint subluxations and dislocations
- Spasticity grading

 TARGET

 ORTHO

 (C) www.targetortho.com

Examination

The tone is velocity dependent, which means that if a muscle is stretched rapidly, tone increases more than if the same muscle group were stretched gradually and gently.

- Dystonia is described as increased tone, which is not velocity dependent.
- ORTONE in spasticity "clasped knife,"

 (C) www.targeto.come in dystonic cerebralpalsy "lead pipe,"

Examination

 Athetosis is characterized by abnormal writhing movements that the patient cannot control

 Cerebellar lesions lead to ataxic cerebral palsy. The disturbed balance of these children results in a wide-based and clumsy gait. Pure ataxic cerebral palsy is rare

Ashwoth scale

- 1. No increase in muscle tone.
- 2. Slight increase in tone giving a "catch" when affected part is moved in flexion or extension.
- 3. More marked increase in tone but affected part is easily flexed.
- 4. Considerable increase in tone; passive movement difficult.
- 5. Affected part is rigid in flexion or extension.

Physical examination: Sensory

- Two-point discrimination (>15-20 mm) is the ideal to test.
- In younger children tactile sensitivity, stereognosis, and proprioception are easier and more accurate to test.
- The sensation is a good measure of the overall functional ability of the extremity.

Sensory Impairment

Evaluation of sensory capacity is difficult,

 but sensory deficits are recognized to contribute more to the overall impairment in function.

 When SSEPs were included, impairment in at least one modality of sensory function was tanger
 TARGER
 When SSEPs were included, impairment in at least one modality of sensory function was tanger

Sensory Impairment

Van Heest et al (1993)showed that 97% of the spastic limbs had a stereognosis deficit, 90% had a two-point discrimination deficit, and 46% had a proprioception deficit.

 Thus sensory deficits are the rule rather than the exception in children with spastic hemiplegia.

Effect on growth

Van Heest et al (1993) found a correlation between the severity of sensory impairment and the degree of growth impairment in the affected limb.

Those children with severe stereognosis deficits had significantly smaller limbs than the children with mild or moderate TARGE tereognosis deficits.

Prognosis for ambulation

 ability to control the head by 9 months and to sit by 24 months predicts the eventual ability to walk

• Many agree that the ability to walk plateaus by 7 years of age, thus implying that if a child is non-ambulatory at 7 years, the child will probably never become ambulatory

PROGNOSIS for AMBULATION

GOOD Prognosis

- OHemiplegics/ Ataxic pxs
- Achievement of all motor skills by age of 8.
- OIndependent sitting before 2 years
- OPersistence of fewer than 3 of the primitive reflexes at age 18 months.

POOR Prognosis

- Quadriplegics
- Did not attain independent sitting by age 4.
- Persistence of primitive reflexes beyond 18 months

Upper limb examination

Shoulder

Elbow

Forearm

Wrist

Spine examination

Kyphosis

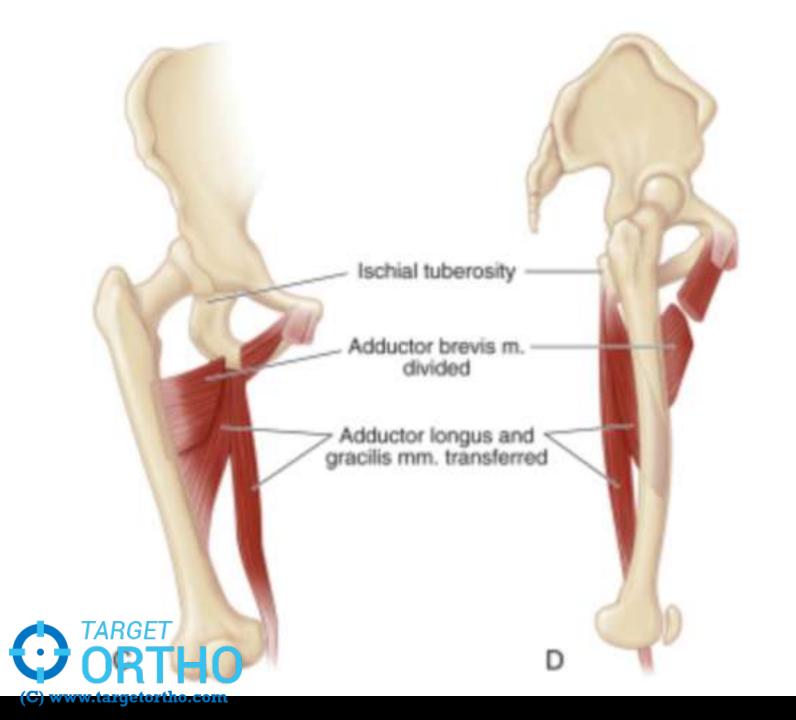
Ex-aggregated lardosis

scoliosis

Lower limb examination

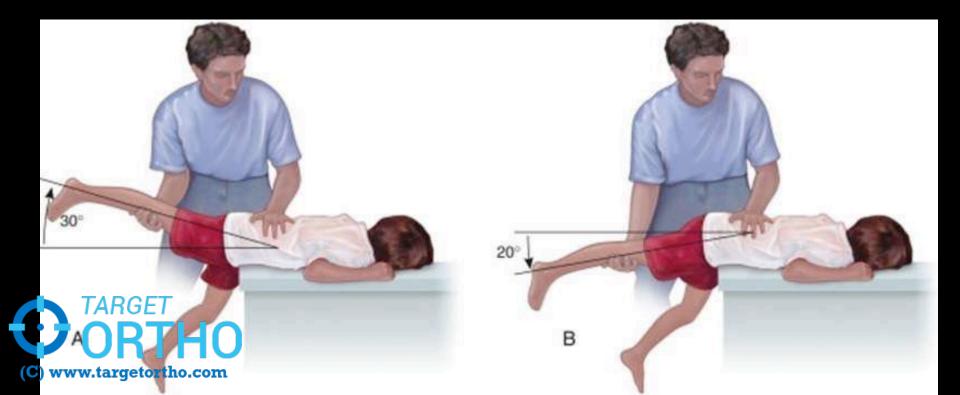
- Adduction contracture
- Pseudo-adduction

Phelp's test


Adduction contracture

Adductor release

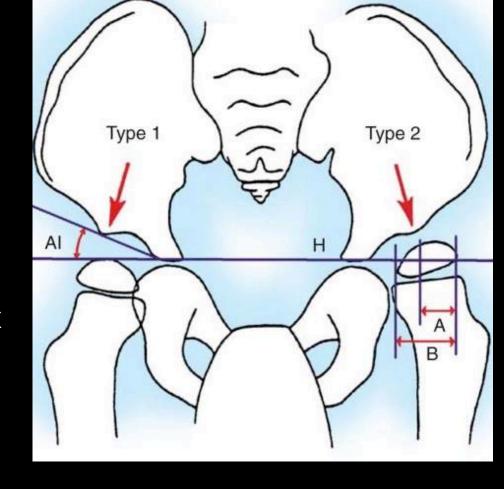
Perry transfer


Obturator neurectomy

Lower limb examination

- Hip flexion contracture
 - Thomas test
 - Staheli test

Hip flexion contracture


Psoas release over the brim

Iliopsoas release at lesser trochanter

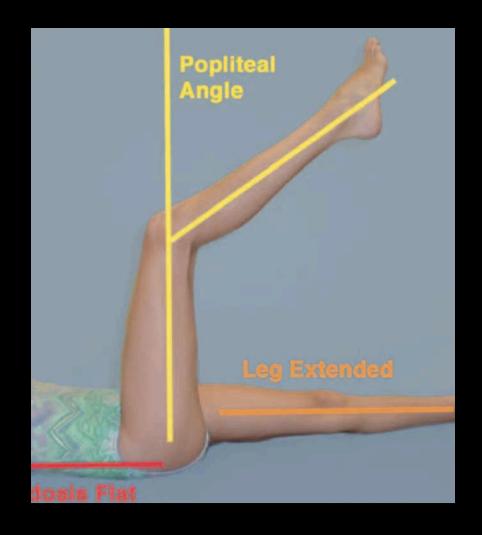
Hip subluxation or dislocation

- In response to muscle imbalance
- Add & Flex >> Abd & ext
- Remodelling of anteversion angle
- Neck shaft angle
- Loss of range of motion
- Reimer's migration index
- Shanton's line
- Acetabular index

Hip subluxation or dislocattion

Soft tissue release

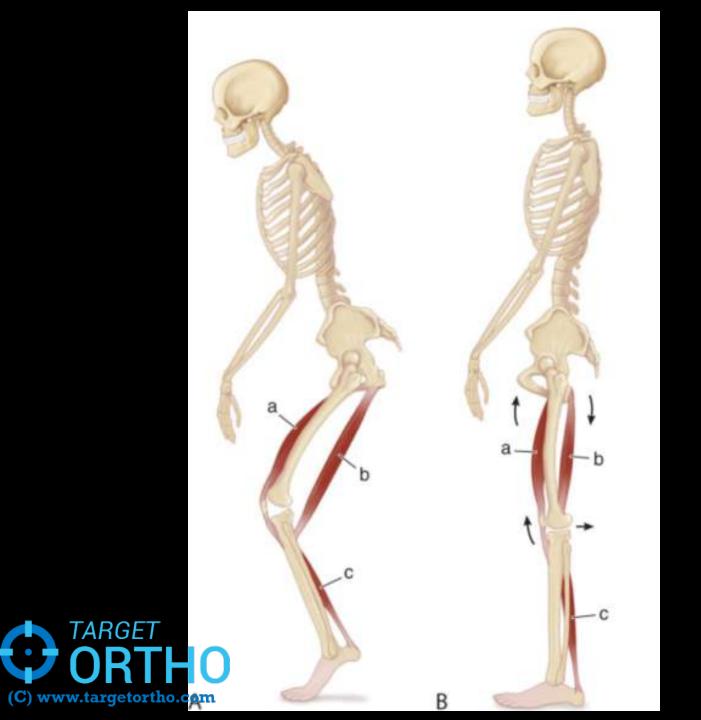
Reduction and reconstruction

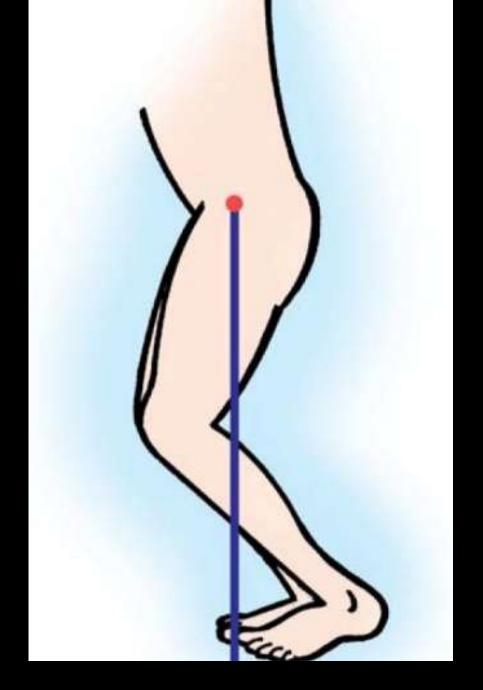

Salvage surgery

Hip arthrodesis

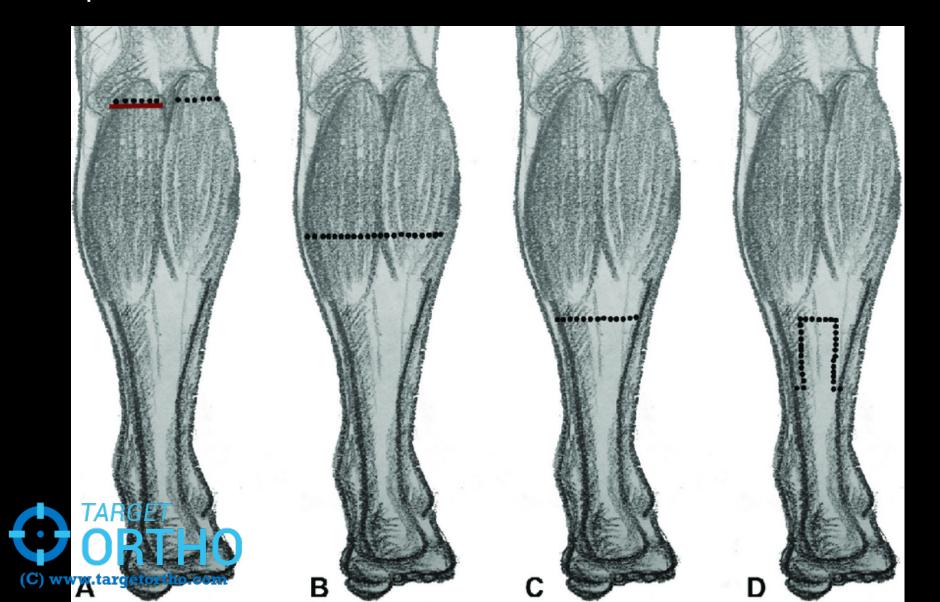
Knee

- Flexion deformity
- Hamstring spasticity
- Knee contracture
- Quadriceps power
- Prone rectus test
- Patella alta




Knee

- Hamstring lengthening
- Posterior capsule release
- Patellar tendon reefing
- Distal transfer of rectus femoris
- Femur shortening
- Supracondylar extension osteotomy
- ST transfer ao adductor tubercle


Hip and knee relations

Foot

Equinus

foot

- Equinovarus
- Lengthening or recessionTib post
- Split tendon transfer
- Osteotomy of calcaneus

Foot

Equinovalgus

- Calcaneus osteotomy
- Subtalar arthrodesis
- Triple arthrodesis

GROSS MOTOR FUNCTIONAL CLASSIFICATION

LEVEL 1	Walks without restriction, Limitations in high- level skills
LEVEL 2	Walks without devices, Limitations in walking outdoors
LEVEL 3	Walks with devices, Limitations walking outdoors
LEVEL 4	Limited mobility, Poor mobility outdoors
LEVEL 5 TARGET ORTHO	Very limited self-mobility, even with assistive technology

(C) www.targetortho.com

Primary deficit due to brain lesion

Muscle tone- spasticity, dystonia

Balance

Strength

Selectivity

Sensation

Secondary impairment

Contractures (equinus, adduction)

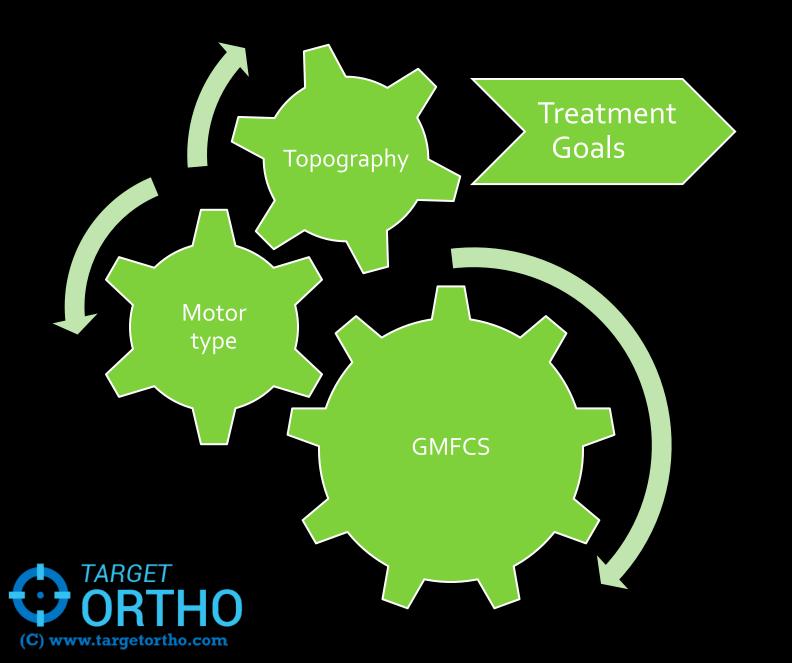
Deformities (Scoliosis

(C) www.targetortho.com

- Adaptive or compensatory mechanisms
- Knee hyperextension in stance

Motor Type

- Spastic
- Dyskinetic
- Mixed


Body part involved

- Diplegia
- Mono, Hemiplegia
- Total Body

Function

- GMFCS
- FMS

Gait Correction Surgery: Aims

GMFCS level I-III

■ Correct deformity

■ Improve the gait pattern

■ Maintain (? Improve) function

Aim of orthopaedic surgery

GMFCS level IV

■ Flexible, enlocated hips, good sitting

Pain-free braceable feet for transfers and minimal ambulation

Aim of orthopaedic surgery

GMFCS level V

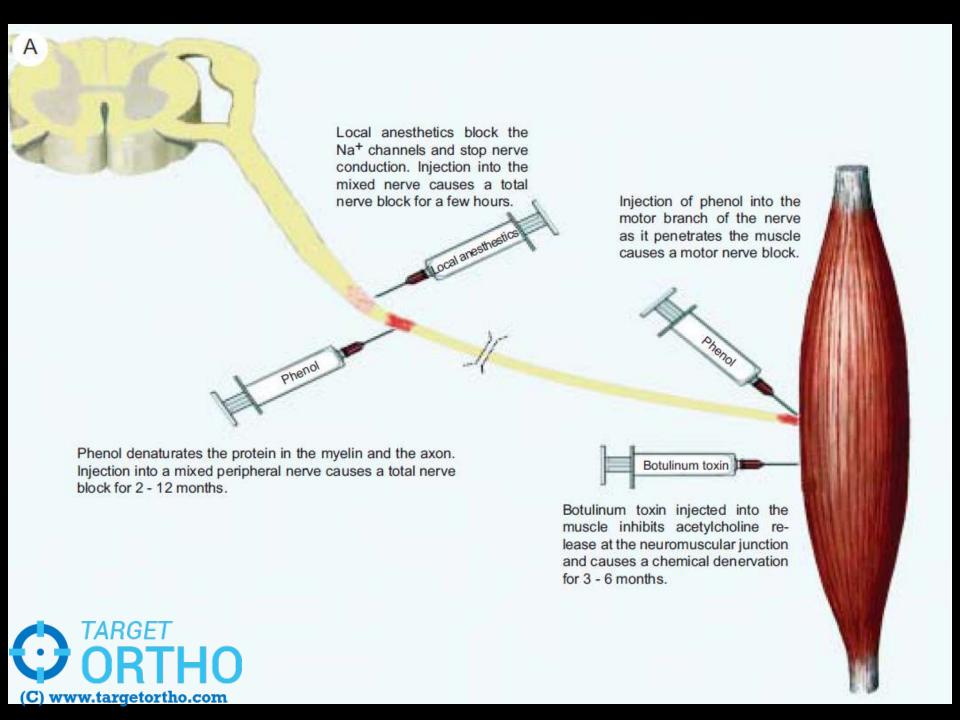
Enlocated pain-free hips

■ Spinal alignment

Optimal sitting posture

CONCEPTS

www.targetortho.com


 Monoarticular muscles-stabilizers of joints iliacus, adductors, gluteals.

 Polyarticular muscles –movers of joints affect gait and movement psoas, gastrocnemius, hamstrings,

Musculotendinous junction –growth plate of
 TARGETHUSCIES --needs stretch for growth

Management of Hypertonia

- Oral Medications
 - a. Baclofen
 - b. Dantrolene
 - c. Diazepam
- Specific Medications for Dystonia:
 - a. Trihexyphenidyl HCl
 - b. Levodopa-carbidopa (Sinemet)
- Botox Injections
- Phenol Injection

Botulinium Toxin Type A (BOTOX)

- Effective in improving ROM and reducing tone.
- Also effective in improving motor control.
- Best results: Botox + Serial casting
- Indications for Use of Botox:
 - a. Calf injection for dynamic equinus persistent throughout the gait cycle
 - b. Hamstring injection for dynamic knee flexion
 - Adductor injection for scissoring
 - d. Diagnostic measures before surgery
 - e. Management of focal limb dystonia

HOW DO WE MANAGE SHORTENING??

Stretching

Splints

Serial casts

Surgery

NEUROSURGICAL INTERVENTIONS

- Selective Dorsal Rhizotomy (SDR)
- II. Intrathecal Baclofen (ITB) Pump
- III. Stereotactic ablation of selected thalamic nuclei
- IV. Chronic ES of the Cerebellum or Posterior Columns
 - Has shown promise in adults with dystonia.

Selective Dorsal Rhizotomy

- Since 1980's
- Reduces spasticity by interrupting the sensory input in the dorsal horn.
- Ideal Candidates for SDR:
 - Premature child with spastic diplegia.
 - 2. Good balance
 - 3. Good selective motor skills
 - 4. Aged 4 or 5 years
 - 5. With minimal contactures
 - 6. Able to walk unassisted
- Athetosis contraindication for SDR
- Thystonia can become more problematic post

 (C) www.targetortho.com

Two groups of children who benefit from selective dorsal rhizotomy:

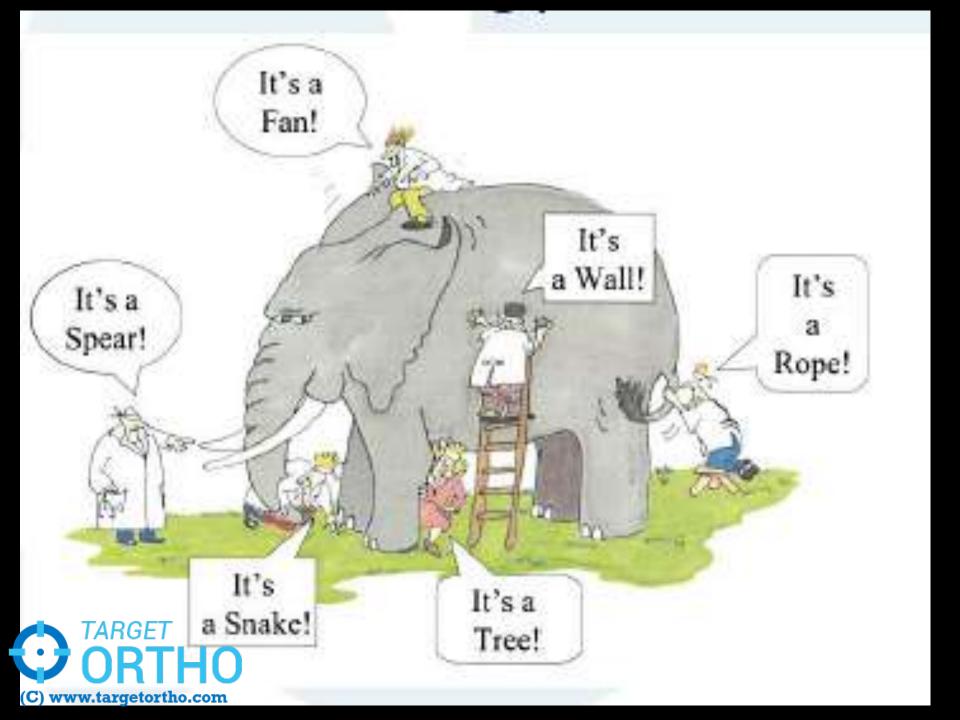
- Spastic Diplegics (Borderline ambulators)
 - The goals of surgery : better gait and leg function
- 2. Severe Spastic Quadriparetics
 - increase their independence by allowing them to sit for longer periods of time, use a potty seat, or power a wheelchair on their own.

Intrathecal Baclofen

 In addition to spasticity reduction, it also has impact on dystonia.

- Complications with ITB are as high as 50%.
 - Improvements in technology with catheters and pumps might reduce the mechanical risk.
 - Experience in management.
 - Abrupt withdrawal in children must be treated aggressively.

PROGNOSIS for AMBULATION


GOOD Prognosis

- OHemiplegics/ Ataxic pxs
- Achievement of all motor skills by age of 8.
- OIndependent sitting before 2 years
- OPersistence of fewer than 3 of the primitive reflexes at age 18 months.

POOR Prognosis

- Quadriplegics
- Did not attain independent sitting by age 4.
- Persistence of primitive reflexes beyond 18 months

Spinal Dysraphism

- complex group of developmental abnormalities of the spine and neural axis in which there is a nerve tissue anomaly,
- usually combined with bony anomalies of the vertebral column

 Myelomeningocele is one of the more severe forms of spinal dysraphism,

meningocele,

lipomeningocele,

and caudal regression syndrome

Myelomeningocoele occulta

- overlying sinus,
- fatty deposit,
- or hemangioma

Tethered cord syndrome

Spinal cord

Dysplasia of the spinal cord is invariably present.

- The cord may be
 - (1) cystic or cavitated,
 - (2) solid but degenerated and disorganized,
 - (3) grossly proliferated

Classification

Thoracic

Upper lumbar

Lower lumbar

sacral

Thoracic

Flail limbs

(C) www.targetortho.com

congenital scoliosis,

developmental scoliosis,

 and progressive congenital deficiency kyphosis.

Uppar lumbar

hip flexor power and some adductor power,
 but no motor control of the knees or feet

 No difference in ambulation potential as compared to thoracic level

Lower thoracic

- Patients with lower lumbar lesions have greater hip adductor strength and, more important, quadriceps power to provide active knee extension.
- Those with L5 functioning have a functioning tibialis anterior, and they may have medial hamstring function as well.
- Hip strength is usually adequate to allow these patients to walk with the hips unbraced, that is, TARGEWITH knee-ankle-foot orthoses (KAFOs).

Sacral level

 near-normal knee function and more stable hip, foot, and ankle function

 Their partial paralysis and insensate skin can lead to a number of foot problems, however, including cavovarus deformity, clawtoes, and neurogenic ulcers

complications

Latex allergy

Pressure sores

Infection

Fracture

Orthopaedic management

- Foot
- Knee
- Hip

- Foot calcaneus deformity
- Valgus deformity of ankle
- Rotational deormities

Hip dislocation

- simple release of the iliopsoas tendon with adductor release,
- posterior transfer of the adductor muscle mass on the ischium to convert it into more of a hip extensor,
- 3 transfer of the iliopsoas tendon posterolaterally to convert it to a hip abductor (Sharrard procedure), and
- 4 transfer of the external oblique to the trochanter to recruit a hip abductor from the TARGET anterior abdominal wall.

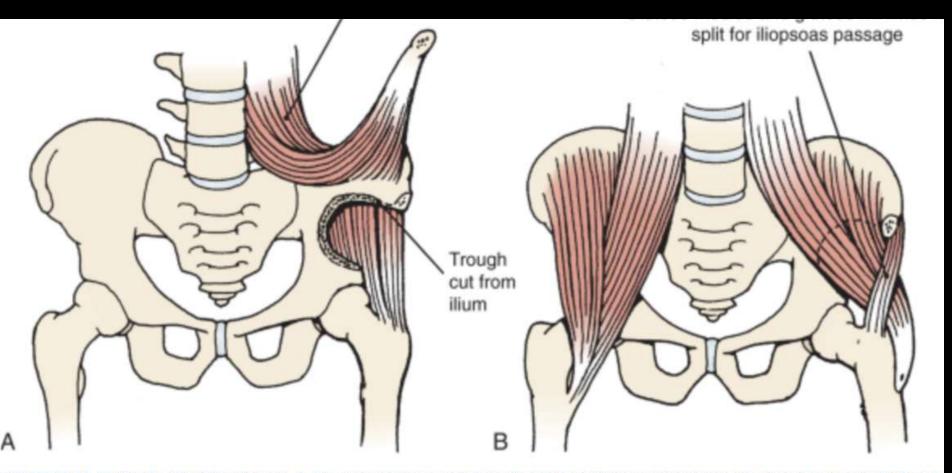
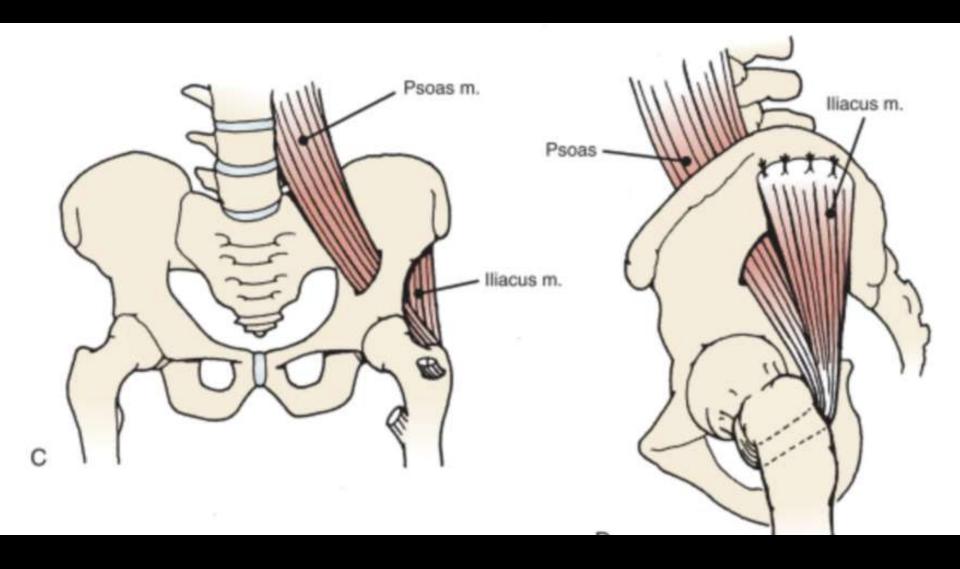
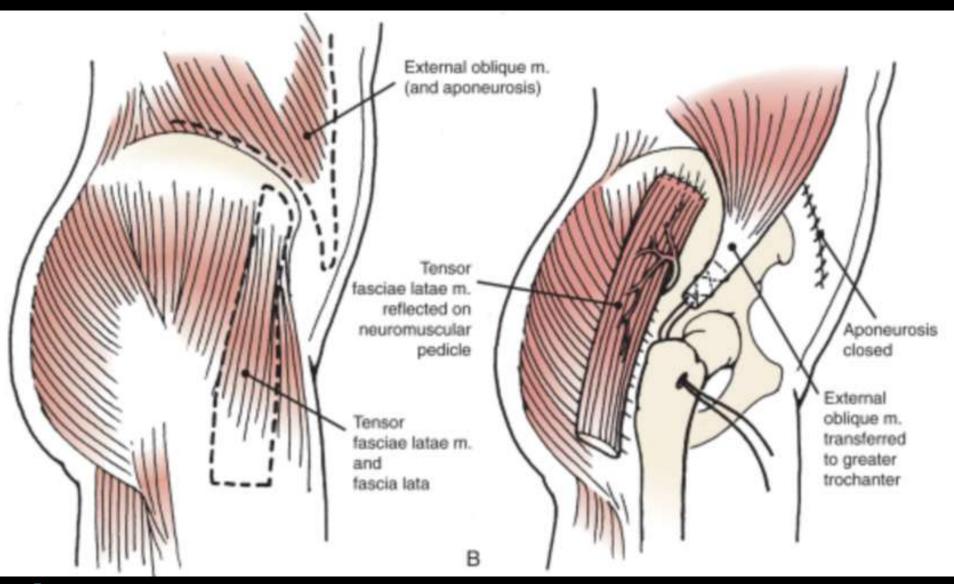




FIGURE 26-12 Mustard transfer of the iliopsoas. A, The iliacus muscle is mobilized with a portion of the lesser trochanter, and a trough is made in the ilium.B,

