IMAGING OF LUMBOSACRAL SPINE

Dr. Zainab Vora MD Radiology (AIIMS, Gold medalist)

LOW BACK ACHE

- Back pain that does not extend below iliac crest
- Acute VS chronic
- Diagnostic triage
 - Non specific low back pain
 - Specific low back pain
 - Sciatica and radicular pain

TARGET

<u>Fracture</u>

Age>70 H/o osteoporosis Trauma Corticosteroid use <u>Tumour</u> Age>50 Unexplained weight loss Incontinence

H/o previous cancer

Infection

H/o fever, chills Recent skin / urinary infection Immunosuppression Recent spine surgery <u>Neurologic</u>

> Sciatica New onset urinary or fecal Abnormal neurological signs

DIAGNOSTIC ALGORITHM

TARGET ORTHO

IMAGING MODALITIES

- Radiograph
- CT

- MRI
- Myelography
- CT myelography
- Discography
- Bone Scan

RADIOGRAPH

- Initial Investigation
- Alignment
- Assessment of bony density
- Disc and vertebral height
- Fracture
- Bony deformity
- Sacroilitis

MYELOGRAPHY

- Injection of contrast into subarachnoid space(L3-L4)
- Level of obstruction/filling defect
- Spinal cord tumours
- Nerve root injuries
- Herniated disc
- Cysts

Replaced by CT/MRI TARGET

DISCOGRAPHY

 To prove that pain is of discogenic origin

- Fine needle inserted to centre of disc under fluoro guidance
- Contrast injected to stress the disc
- Patients pain response recorded
- Assess actual morphology of disc
 TARGET OR Diagnose annular tears

CT

Best for: Bony spinal stenosis Fractures Tumours Calcification and air Poor differentiation of soft tissue within spine Radiation issues

Best for

- Soft tissues
- Bone marrow
- Spinal canal and foramen
- Collapse- Benign or malignant
- Screening for

Cauda equina syndrome Spinal cord injury, radiculopathy Vascular anomalies

MRI

Acquisition of axial sections

AXIAL ANATOMY

VERTEBRAL OSTEOCHONDROSIS

Disc thinning and hyaline degeneration

Chondral microfractures

Chondroblastic activation

Subchondral reactive neovascularisation

Bony trabeculae demineralisation

Modic classification	T1 signal characteristics	T2 signal characteristics	Gadolinium contrast enhancement	Pathobiology
Туре І	Low	High	(+) Present	Marrow oedema (or inflammation)
Туре II	High	High	(-) Absent	Fatty marrow conversion
Type III	Low	Low	(-) Absent	Subchondral bone sclerosis

CONTRACT CON

Osteosclerosis

MODIC CHANGES

TYPE 1

- Discovertibritis
- Aseptic spondylitis

Type 2

Fatty pattern

Type 3

- Sclerotic pattern
- Endplate sclerosis
- Traction
 osteophytes
- T1&T2 dark

DEGENERATIVE DISC DISEASE

- Loss of water and proteoglycans of nucleus pulposus
- Characterised by Dehydration
 - Fissures Bulging Herniation

DISC FISSURES

- Intranuclear cleft
- Annular tears

Revised terminologies

Disc Bulge: >90 degrees

- Disc Herniation: <90 degrees
- a) Protrusion: Width of the base is larger than any other part of the herniation
- b) Extrusion : Width of the base is narrower than the remaining herniation in any plane
- c) Migration: Attachment with disc maintained

TARGET Sequestration: Attachment lost ORTHO

DISC HERNIATIONS-Diffuse disc bulge:

 Circumferential symmetrical diffuse extension of annulus beyond the adjacent vertebral end plate by 3 mm due to laxity of annulus.

LOCALISED DISPLACEMENTS

Protrusion: Broader base than extension of disc material beyond disc space

Extrusion & sequestration

- Base narrower than the extension of disc material beyond disc space
- Disc material lost communication with disc-sequestration

Schmorls nodules

- Herniation of disc through endplates
- Central defect in upper endplate of vertebral body
- Sclerotic rim
- MRI-relation b/w disc and herniation

SPINAL STENOSIS

Central canal

- Lateral recess
- Foraminal

<u>Central canal</u>

Sagittal diameter 10-14-moderate <10mm- severe

FORAMINAL STENOSIS

- Disc/marginal osteophytes protrusion
- Narrowing of disc space anterosuperior slippage of superior facet

LATERAL RECESS STENOSIS

- Hypertrophy and osteophytosis of superior articular facet
- Vertebral body osteophytosis
- When sagittal diameter of lateral recess<4mm

PARS INTERARTICULARIS DEFECT

- Mass of bone between superior and inferior articular facets
- Types
 Dysplastic,traumatic, degenerative
- Unilateral/bilateral
- Pain with extension /rotation movement of spine
- Usually non progressive

SPONDYLOLYSIS

SPONDYLOLISTHESIS

- Most frequent at L5-S1
- Narrowing of interverteral foramina
- CT more sensitive than radiographs; for staging of healing of fracture
- Scintigraphy and SPECT-for subtle stress fractures
- MRI-for early detection; assessing narrowing of foramen; nerve root compression
- 3mm thick sagittal sections more useful TARGET

SPONDYLOSIS DEFORMANS

- Classic sign
 –osteophytosis
- Weakening and radial degeneration of annulus
- Bridge osteophytes

Bertolotti syndrome = LSTV

Castellvi classification

Type Description

ww.targetortho.com

II

Illustration

Dysplastic transverse process (unilateral: Ia;

 bilateral: lb), measuring at least 19 mm in width (craniocaudad dimension)

Incomplete lumbarization/sacralization showing enlarged transverse processes with unilateral (IIa) or bilateral (IIb) pseudarthrosis with the adjacent sacral ala

Complete lumbarization/sacralization showing III enlarged transverse processes, with unilateral (IIIa) or bilateral (IIIb) fusion with the adjacent ala

AR Mixed (eg, type IIa on one side and type IIIa the

FAILED BACK SURGERY SYNDROME Persistent lumbar back pain after surgical procedure

Causes

Recurrent/residual lumbar disc disease

Scar

Post operative instability

instrument related

wrong level surgery

lateral recess/lumbar canal stenosis

epidural abcess/hematoma

Arachnoiditis

TARGET

RECURRENT DISC DISEASE

EPIDURAL HEMATOMA

TARLOV CYSTS

- CSF filled dilatation of sacral nerve root sheath
- Type 2 spinal meningeal cyst
- Can cause bony erosion
- Caused by ball valve mechanism
- Can cause mass effect on nerve roots

SCHEUERMANNS DISEASE

- Aseptic necrosis of ring vertebral apophyses
- Vertebral wedging
- Endplate irregularity
- Narrowing of disc space
- Herniation

Sorensons criteria

- Thoracic spine kyphosis>40 or
- Thoracolumbar kyphosis>30 and
- Atleast 3 vertebral body wedging> 5

CONCLUSION

- Imaging should be used judiciously in low back pain
- Degenerative disease of LS spine constitute majority of etiology
- Correlation between symptoms and imaging may not be seen in all cases
- Imaging plays central role in guiding the management
 MRI is the preferred modality in most of the low back ache cases

