Assumptions of Linear Regression

Major Assumptions

- Normality
- Linearity
- Homoscedasticity
- Multicollinearity

Assumption of Normality

• Normality of the error term (The error term is normally distributed)

Diagnosis

Histogram, steam and leaf display, box plot or normal probability plot of residulas

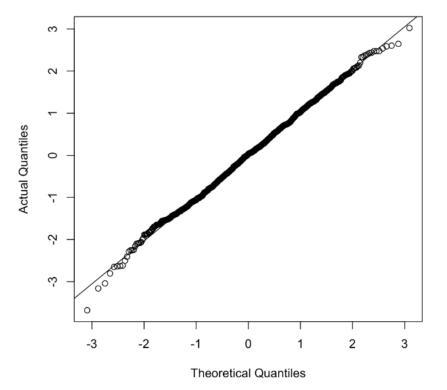


Figure 03: Normality Plot

Non-Normality : What to do ?

- If residuals are slightly depart from normality, no need to do any thing
- If residuals are very far from normality, then we can use various transformations

	X	
Y	X	logX
Y	linear	linear-log
	$\hat{Y}_i = \alpha + \beta X_i$	$\hat{Y}_i = \alpha + \beta \log X_i$
$\log Y$	log-linear	log-log
	$\log \hat{Y}_i = \alpha + \beta X_i$	$\log \hat{Y}_i = \alpha + \beta \log X_i$

Assumption of Linearity

• The dependent variable retains a linear relationship with the independent variables

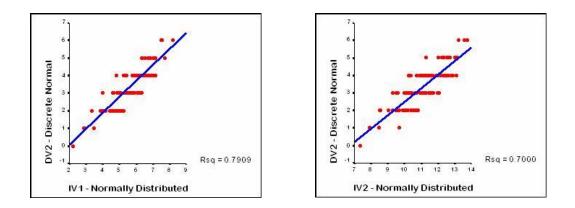
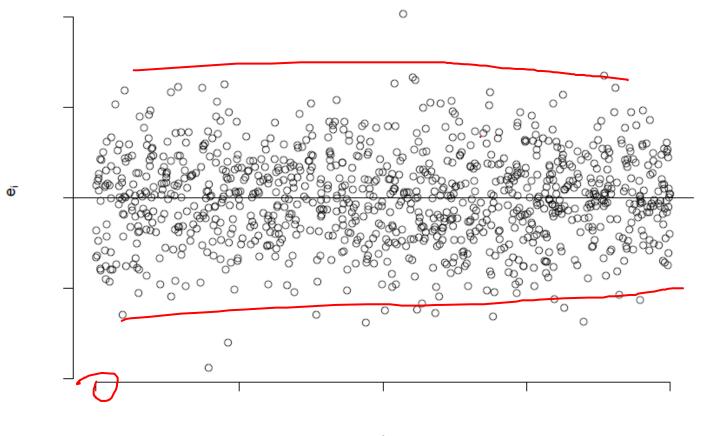


Figure 4: Linear Relationship

Homogeneity of Variance

- It is assumed that variance of error term is the same across all values of the independent variable
- Plot the standardized residuals against the predicted values. There should be equal spread.

Figure 5: Satisfactory Residual Plot



ŷi

Figure 6: Non Constant Variance

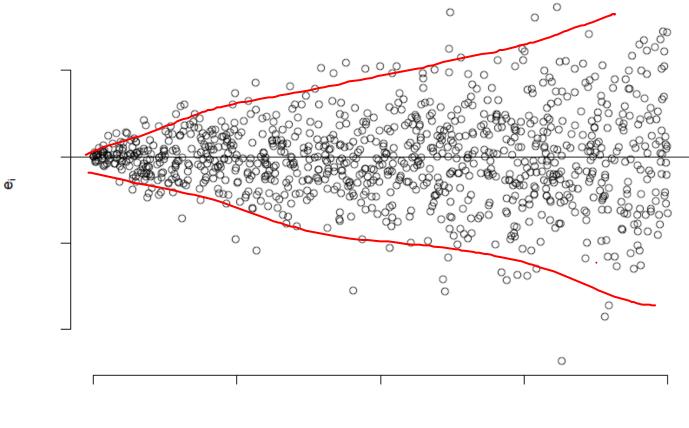
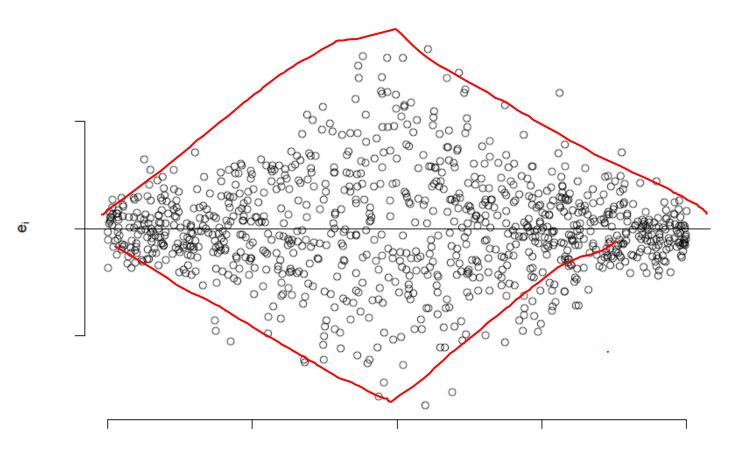


Figure 7: Non Constant Variance



ŷi

Adverse effect of Heteroscedasticity

> The variance of error terms is used in computing *t*-tests of β coefficients. If this variance is not constant, then *t*-tests are not healthy (not efficient, i.e.: the probability of type 2 error is higher)

> However, the coefficients are unbiased. Therefore heteroscedasticity is **not a** 'fatal illness'

Check by White test or similar tests.

Solution

Use heteroscedasticity-adjusted t-statistics and p-values

Use Data Transformation

Multi Collinearity

- Strong relationship among explanatory variables.
- Example:

$$X_3 = 2X_1 + 5X_2$$

Multi Collinearity

- WHR= **waist** circumference / **hip** circumference.
- BMI=weight/height^2
- DV:SBP IV: WHR
- DV:SBP IV: BMI

Adverse effects of Multicollinearity

- Variances of regression coefficients are inflated
- Regression coefficients may be different from their true values, even signs
- Adding or removing variables produces large changes in coefficients. (inconsistency)
- In some cases, the *F* ratio may be **significant**, **R**² may be **very high** despite the **all** *t* **ratios are insignificant** (suggesting no significant relationship)

Multi collinearity: Detection

- The analysis exhibits the signs of multicollinearity such as, estimates of the coefficients vary from model to model
- The *t*-tests for each of the individual slopes are non-significant (P > 0.05), but the overall *F*-test for testing all of the slopes are simultaneously 0 is significant (P < 0.05)
- The correlations among pairs of predictor variables are large
- Looking at correlations only among *pairs* of predictors, however, is limiting. It is possible that the pairwise correlations are small, and yet a linear dependence exists among three or even more variables $(X_3 = 2X_1 + 5X_2)$

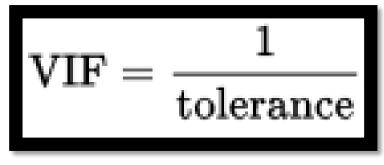
Variance Inflation Factor (VIF)

variances — of the estimated coefficients are inflated when multi collinearity exists. So, the variance inflation factor for the estimated coefficient b_k —denoted VIF_k —is just the factor by which the variance is inflated

Interpretation

- VIFs exceeding 5 warrant further investigation
- VIFs exceeding 10 are signs of serious multi collinearity

Tolerance Factor



Interpretation

- Tolerance of less than 0.20 warrant further investigation
- Tolerance of less than 0.10 are signs of serious multi collinearity

Multi collinearity : What to do?

- Drop a collinear variable from the regression
- Combine collinear variables (e.g. use their sum as one variable)

Independence of Errors

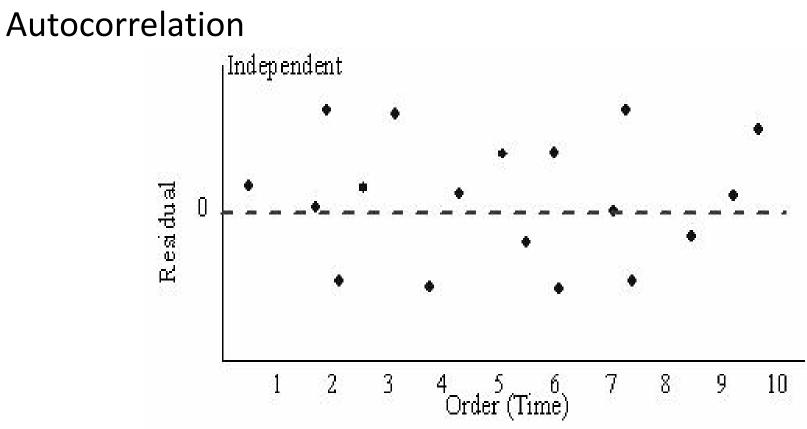


Figure 8: Independence of Error

Independence of Errors

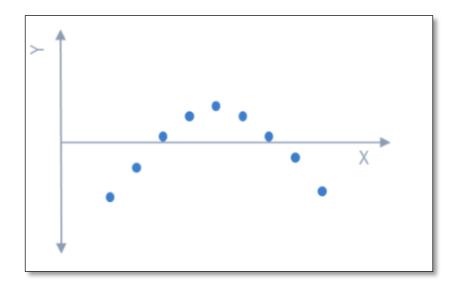


Figure 9: Presence of Autocorrelation

Independence of Errors: Detection

• Residual plots

(Figure number 8 & 9)

• Durbin-Wats

tso
$$\sum_{\substack{t=2\\ n \\ t=1}}^{n} (e_t - e_{t-1})^2$$

Where e_t =residual at the time period t

Independence of Errors: Detection

- H_0 = No first order autocorrelation.
- H_1 = first order correlation exists.
- DW Statistic = 2 No Autocorrelation
- A **rule of thumb** is that test statistic values in the range of 1.5 to 2.5 are relatively normal

Summary Regression

- Relationship between two variables is **functional dependence** of one on the other
- Magnitude of one variable (DV) is assumed to be determined by a function of the magnitude of the second variable(IV)
- The **reverse may not true** (Ex.: DV: Blood Pressure; IV: Age)
- The term dependent ≠ Cause & Effect Relationship

References

- John O. Rawlings, Sastry G. Pantula, David A. Dickey. Applied Regression Analysis: A Research Tool. Second Edition. Springer
- Daryl S. Paulson. Handbook of Regression and Modeling Applications for the Clinical and Pharmaceutical Industries. Chapman & Hall/ CRC Biostatistics Series
- a visual guide to CRISP-DM methodology (http://www.crisp-dm.org/download.htm)
- https;//www.analyticsvidhya.com/blog/2016/07/deeper-regression-analysis assumptions-plotssolutions/
- http://www.statisticshowto.com/durbin-watson-test-coefficient/
- David M. Levine, David F. Stephan, Kathryn A. Szabat. STATISTICS FOR MANAGERS USING MICROSOFT EXCEL, 8th Edition. Pearson Publication.

Lets Connect!

https://www.youtube.com/c/sscrindia

+91 750.625.0403

